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This paper deals with the development of an improved gas-kinetic BGK scheme
for inviscid and viscous flow fields. As the first step toward efficient calculation, par-
ticle distribution functions in the general solution of the BGK model are simplified
to the extent that the essential features of the standard gas-kinetic BGK scheme are
not lost. Then, improved schemes are suggested, which overcome difficulties that
may arise in the applications of BGK-type schemes to compressible viscous flow
calculations. A Prandtl number correction method is also developed to allow the
present schemes to work for arbitrary Pr number. For steady state problems, con-
vergence acceleration techniques suitable for the present schemes are developed in
the framework of an implicit time integration. Various numerical experiments rang-
ing from one-dimensional shock tubes to viscous turbulent flows are performed
to demonstrate accuracy, robustness, and other essential features of the present
method. @ 2000 Academic Press

Key Words:gas-kinetic BGK scheme; convergence acceleration; Pr number cor-
rection; viscous turbulent flows.

1. INTRODUCTION

Many numerical schemes have been developed to predict compressible inviscid and
cous flows using the abilities of fast computing machines. Designing efficient numeri
schemes possessing a high degree of accuracy and robustness is the central issue
field. Although great advances have been achieved toward this goal, none of them se
to be perfect enough to pass all the numerical tests set by many researchers. Most nc
and successful among them are Godunov-type schemes and flux vector splitting sche
in which the wave interactions of the Euler equations are resolved in an upwind m
ner. As those numerical methods are applied to various aerodynamic problems of sp
ranging from subsonic to hypersonic, some serious drawbacks have surfaced. The
vector splitting schemes usually provide efficient and robust results even in very se\
environments involving strong shocks and vacuum-like flows. However, the ignorance
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2 CHAE, KIM, AND RHO

contact discontinuities precludes the accurate calculation of viscous flows, which is he
alleviated by higher order spatial interpolation or mesh refinement near a wall. In the fa
of Godunov-type schemes, Roe’s FDS (Flux Difference Splitting) scheme [1] has enjc
great popularity owing to its accuracy for both compressible inviscid and viscous flows.
method, by introducing the average state flux Jacobian satisfying the Rankine—Hug
relation, solves exactly the locally linearized Euler equations and can capture a shock v
one computational cell. It was not until Quirk’s extensive catalogue [2] on the patholog
behaviors of Roe’s scheme that issues regarding the robustness of numerical scheme
much attention. The transverse shock instability and negative internal energy of Godu
type schemes are reported to be the main threats to the computation of high speed flow
strong shock waves and expansion fans. Remedies for such spurious behaviors ger
lie in modifying wave speeds at the expense of accuracy. Thus, contemporary concel
the development of numerical schemes is mainly directed toward combining the acct
of Godunov-type schemes and the robustness of flux vector splitting schemes.

Besides the numerical schemes stemming from the discretization of the Euler equa
several gas-kinetic schemes have been developed based on the Boltzmann equation
was the first one who developed a finite-volume upwind flux for the Euler equations, ce
the EFM (Equilibrium Flux Method) [3]. Reitz also developed a numerical scheme ba
on the numerical integration of the Maxwellian distribution [4]. Perthame [5] and Man
and Desphande [6] further explored the EFM approach rigorously to derive some us
properties about positivity and entropy conditions. Since these methods, however, ¢
particles to penetrate a cell interface without collisions during unit computational tir
they usually produce a large numerical viscosity and heat conduction, whose merits
demerits are shared with the flux vector splitting schemes from the Euler equations [7].
way to reduce the numerical dissipation of these methods, Macrossan and Oliver proy
the EIM (Equilibrium Interface Method), where particle collisions are introduced inst:
taneously in computing a numerical flux at a cell interface [8]. A similar approach wit
different name, the TTT (Totally Thermalized Transport) scheme [9] was also propose
dependently by Xu. These methods can resolve a shock layer or a boundary layer accu
but they may yield numerical oscillations in capturing rarefaction waves. More recer
Moschetta and Pullin proposed a hybrid solver (EFMO) which augments the EFM \
Osher’s approximate Riemann solver for the accurate capturing of contact discontir
[10].

One of the distinct approaches to take particle collision effect into consideration in
evolution stage can be found in Xu and Prendergast [11, 12] andt>ali [13]. In this
method, the collision effect is considered by the BGK model as an approximation of
collision integral in the Boltzmann equation. It is found that this gas-kinetic BGK sche
has accuracy superior to flux vector splitting schemes and avoids the anomalies of God
type schemes. The other desirable characteristics of BGK-type schemes are also dist
in Refs. [11-13].

The gas-kinetic BGK scheme, however, is not completely free from shortcomings in
computation of steady inviscid and viscous flows. In the present paper, we notice se
difficulties of the BGK-based scheme which may arise in the computation of compres:
viscous flows and eliminate them by modifying one of its flux components. During t
process, the relation between the BGK numerical flux and other kinetic fluxes suc
the EFM, EIM, or TTT schemes is clarified. Also, an efficient method of Prandtl numl
correction is proposed for the proper calculation of thermal conduction effects. In o
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to get a sufficiently converged steady state solution, implicit formulation and a local t
stepping consistent with the BGK-based scheme are proposed. For efficient steady
calculations, a multigrid method suitable for the proposed schemes is also developed

This paper is organized as follows. In Section 2, the construction of the standard
kinetic BGK scheme is presented. Referring to a few issues of the derived scheme in
pressible viscous calculations, modified gas-kinetic BGK schemes with a Prandtl nui
correction are proposed. In addition, temporal discretization and convergence accele
techniques are dealt with. In Section 3, we apply the schemes developed in Sectior
various numerical tests in order to demonstrate their essential features. Finally, concl
remarks are made.

2. NUMERICAL METHODS

2.1. Standard Gas-Kinetic BGK Scheme

A standard gas-kinetic BGK scheme [11] [12] begins with the Boltzmann equation
it is written in two dimensions as
of of of _ Sf
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wheref is a particle distribution function and the right hand side stands for a collision te
Bhatnagaet al.[14] suggested a relaxation model as an approximation of the complice
collision term in Eq. (1), which can be written as
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where f is a real particle distribution function ampis an equilibrium particle distribution
function which f approaches through particle collisions within a collision time secale
Both f andg are functions of spacg, y), time (t), particle velocity(u, v), andg. & is the

K -dimensional vector of internal velocities introduced to conveniently describe the inte
energy and specific heats for a perfect gas. The internal degree of frééd®oonnected
to the space dimension and the ratio of specific heats by the relatip® =2/(y — 1). If
the particle distribution functiorf is known, under the assumption of hydrodynamic limi
macroscopic variables such as mass dengiky y, t), momentum densit?(x, y, t), and
total energy density(x, vy, t) are obtained from the moment relation as

0
Px
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wheredE = £X-1d& du dv is an infinitesimal volume element in phase spacewrnsithe
vector of the following form:
N

U= {1, u, v, %(u2 + 0%+ sz)} (4)

With the moment relation described in Eq. (3), a physical flux inditirection through a
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cell interface during time stefit can be expressed as

At
sz/ /uf\IJdEdt. (5)
JO

A general solutionf of Eq. (2) at the cell interfacexi1/2, y;j) is obtained as

1 [t ,
fx,y,tu v &) == / g(xX, Yy, t,u, v, £)e" /T dt + eV fo(x — ut, y — vt), (6)
T Jo

wherex’ = X112 —u(t —t’) andy =y; — v(t —t’) are particle trajectories anf} is the
initial non-equilibrium distribution function at=0. The development of the present nu
merical flux essentially lies in the reasonable construction of the distribution funttion
Eq. (6) conforming to the underlying physics. A proper discretization of two distributi
functionsg and fo was originally proposed by Xat al.[11] as the form

gd@d+ax+by), X <0

o= ) ; , (7a)
gd+ax+by, x>0

g = go(1 + ax+ by + At), (7b)

wheregd', g, andgp are local Maxwellian distributions at the left, right, and middle of
cell interface, respectively. The distribution functigis the Taylor series expansion to the
first order of time and space near the middle of the cell interface. Spatial MB
have the following dependency onv, andé:

a = a; + apl + agv + ag(u? + v2 + £2), (8a)
b = by + byu + bgv + ba(U? + v2 + £2), (8b)

where all the coefficient; 4, b;_4 are considered to be locally constant. The spatial slog
al,a’, b, andb" in the functionf, have the similar properties. The determination of the:
coefficients will be discussed later. Since the gas-kinetic BGK scheme allows us the fle:
construction of the two functions, the following forms different from Egs. (7a), (7b) &
suggested:

|
, 0
fo = <gr Xx<v (9a)
g, x>0
g = g(1+ax+ by). (9b)

The spatial slope terms ify are discarded to reduce the computational cost and unneces
numerical dissipation since they appear as additional diffusive fluxes in the final nume
flux form, which is undesirable for the design of a BGK-based scheme for viscous flc
The temporal slope terr in g which couples the spatial slopes with the temporal one
yield the second order temporal accuracy [13, 15] is also neglected in the present app
for the improvement of convergence characteristics and computational efficiency. Dt
its time evolutionary characteh is particularly suitable for unsteady flow computation
but it shows a very slow convergence behavior in steady state calculations, which cz
usually observed in Lax—Wendroff type schemes [13, 15]. Detailed analysis and compg
results will be given later.
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Using the relation between the gas distribution function and the macroscopic varie
in Eq. (3), we get

* :‘: ;
/g W dE b+ |- (10)

where the superscript* denotes the left or right state variables at the cellintegtage, ;).
The Maxwelliang* is then given by

A* (K+2)/2 . 2 2 a2
o — p*(> e IU-U -V 47 (11)
T

where the parameterg, U*, V*, andr* (=(2RT*)~ with gas constan® and temperature
T*) can be uniquely determined from Eq. (10) as

*

* p
o)
U+ P/ p*
A* (K+2)p*

4e*—1/2(Pr2+P;2) /p*)

Flow variables on the right hand side of Eq. (12) are obtained from the MUSCL [
interpolation for a higher order spatial accuracy as

A LS B AQit12,] _ _
QI = Ql,J + 4 {(1 k)d)(iAQi—l/z.j )AQI]./Z,]

AQi_1/2i
+<1+k>¢(%)m+m}7 (13a)
14+ ,)

o ST e AQi2)
Qr = Qijyj 4{(1 k)¢(AQi+3/2,i

AQi32]
+ @1+ ke (ﬁ) AQit1/2 } . (13b)
i+1/2,

) AQii3/2,]

whereQ is a conservative variable amdQ; 12 ; = Qi4+1,j — Qi - ¢ is a limiter function
preventing spurious oscillations in the vicinity of physical discontinuities. Van Leer’s limi
of the forme (r)=(r +|r|)/(1+r) is employed for all the calculations performed in thi
paper. The value af=1 andk = —1 is used to obtain the second order spatial accuracy.
the other hand, the parameters of the Maxweltipcan be determined from the conservatio
constraint as

/(g — fHHwdE=0 for all (x, y) andt. (14)

Since we can locate the cell interface(at.1/2, y;) = (0, 0) without loss of generality, the
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conservation constraint &= 0, substituting Egs. (9a), (9b) into Eq. (14), is expressed a

/1,0 0y —
00 P (W) 4 pf(uP)
| ul ++ r ul -
Poc | _ pl( )T+ o (uT) , (15)
Poy P ht 4 o (h)”
€0 ,0' (U2 + v2 +§2)+ + pr <u2 + v2 +§-2>7
where the following notations are introduced:
n\+ 1 > Nyl A= ny— 1 0 NAl 4=
QY =+ Q"g dE, Q) =— Q"g' dE. (16)
e Jo P S

The quantities with subscript 0 at the cell interface in Eq. (15) are identical to the equilibr
state proposed to calculate the numerical fluxes in EIM or TTT scheme. With the kn
variablespg, Pox, Poy, andso from Eq. (15), Eqg. (12) is used to give the parameters of |
Maxwelliangg, or pg, Ug, Vo andig. Allthe moment calculations involved in the integratior
of the Maxwellian in phase space from negative infinity to zero or zero to positive infir
can be expressed by exponential and error functions. Higher order moments are ¢
calculated by recurrence formulas through integration by parts as in Ref. [15]. The sp
slopeain g at(x+1/2, ¥;) = (0, 0) is calculated from the relation

Pi+1,j — Pi,j

— 1 Pi [ Pi'
/gOa\p dE = B Xt ! ) (17)

P)/i+1.j - P)/Lj

Eitl,j — &ij

whereAx is a distance between the centers of two neighboring cells. Equation (17), ¢
integration on the left hand side, can be expressed as

1 2U0 . Vo My a Pi+lj — Pi,j
Uo Ug+3; UoVo M | _ 1 Py, — Px, (18)
Vo UoVo Vo2 + Xlo Ms & AX Pyi+1,j - Pyi.j
M1 M, M3 My % Ei+lj — &,
where
1 K+2 1 (K +4HUq
My = = (U2 + V2 My=2(US+UgVZ+ —
1 2<o+ o+ o ) 2 2(o+ oVo + 2% ;
1 (K +4HVo
Mz=>(U2+U2No+ ——— |,
3 2( 0 + 0 o+t 2}\’0
ML — 1 (u2+v2)2+ (K +4(UE+V3) N (K? 4+ 6K +8)
4 = 2 0 0 )\0 4A% :

Note that the 4 4 matrix in Eq. (18) is symmetric and can be efficiently inverted to dete
mine the spatial slope coefficients. The coefficients related tg-tlieectional spatial slope
b can be obtained in a similar fashion. Since all the parameters and the coefficients of s|
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slopes have been determined up to this point, the general soluign.gb, y;j) = (0, 0) in
Eq. (6), after substituting Egs. (9a) and (9b), is written as

f(0,0,t,u,v,&) = (L—eV/")go + e /" fo(—ut, —vt)
+(t( =14+ eV) +teV/7) (ua+ vb)go, (19)

which is used to give the time-averaged gas-kinetic BGK numerical flux at the cell inter
in the x-direction as

At
Fx(Qr, Qr, 7, At) = %/ /uf(O, 0,t,u, v, § )Y dEdt, (20)
0

whereAt is a computational time step. The numerical flux in yhéirection can be calcu-
lated similarly after an appropriate coordinate transformation.

The only unknown variable left in the numerical flux formula of Eq. (20) is the partic
collision time, which plays an important role in the accuracy and robustness of the pre
scheme. The collision time can be directly obtained from the relation between colli
time, pressure, and viscosity as

™= L. (21)

After non-dimensionalizing, p, p, and . by free stream valuek /a.,, p@2,, P and
o, FESPEctively, the collision time can be expressed by

Moot
Re.p’

T =

(22)

where a hat denotes non-dimensionalized variatles.and Re, are the Mach number
and Reynolds number based on free stream quantitiesarisithe free stream speed of
sound. The viscosity is calculated from the Sutherland’s law given by
1 ( T )3/ T +S

T (23)

) s

whereS=1104 K andT,, =285 K. The pressurg is the equilibrium interface pressure
obtained bypa/(zio). Since the shock thickness is the order of the mean free patt
molecules in continuum gas dynamics, another collision term which plays the role of
merical dissipation is necessary in order to capture shock discontinuities without unphy
oscillations within finite computational cells. Thus the collision time has the form

Mot o Vio g g (24)
Re,p 00

where the coefficient, can be empirically determined. For inviscid calculations, the phy
ical part of the collision time is given by =I/v from gas-kinetic theory. The mean free
path,l, can be written as the function of local number densitgnd a molecular cross
sectiono asl «c1/no, and the mean thermal speed of moleculés proportional to the

square root of temperature. Hence, the collision time for inviscid flows can be express

VA
Vo Cz%lpl—pw-

A
04
Lo

=C

(S §)

(25)



8 CHAE, KIM, AND RHO

In this case, both the first and the second part of the collision time is treated purely
a numerical purpose. The first part is the numerical dissipation in smooth regions w
the second part is to capture shock discontinuities. The coeffiCieigt also empirically
determined. The value @; is fixed as 5< 1072 in all numerical calculations performed in
this paper, an€, is 1 x 1074 except for the cases denoted specifically. Solution accura
however, is not so sensitive to the variation@f as will be demonstrated in later section
However, we still believe that the present choice of the collision time is not optimal,
further research on this subject is necessary.

The numerical flux of the present method at the cell interface, after Eq. (19) is substit
into Eq. (20), takes the form

Firrej = (1—t(1—e ) /A)F +1(1—e V") /AtF" 4+ (21 — At)
— (At +20)e A7)/ AtFY, (26)

where

oo
2
Fl _ EEMor TTT _ po(U§ + 1/ (2h0))
roUoVo
,Oo(Ug’ + UOVOZ + 2Uo/2o + K(K + 2)U0/(4)»(2))) = poUoHo
(27)
Mﬁma
M ma Uy + B pr/(2h)
Mﬁmaw

M praH — ga’j{la'\/; exp(—a’M?)

Fl = FFfM=F" +F =

Mr_lor ar

M/ ora;Ur + P por /(20r)
+ . , (28)
M/ orar Vi

M porar Hr + 8;’;[% exp(—a?M?)

and

Fin_ / U(UE + vD)goW dE. (29)

Here,M* = :I:ex";;%w'z) + M EMEeM) pet _ erdzaM) andy = /3 /2. For a general two-
dimensional meshiy is the Mach number normal to the cell interface, abd, v,) are
the velocity components in the direction normal and tangential to the cell inteddse.
the speed of sound and is the total enthalpy. The explicit form &' is described in
Appendix. It can be observed from Eg. (26) that the present flux, through the non-li
coupling by the particle collision time, is composed of the contributions from three flux
The numerical flusE' is the EIM [8] or TTT [9] flux whose numerical dissipation is quite
small, andF" is the EFM flux [3] derived from the collisionless Boltzmann equatiol
From the fact that the BGK model produces the Navier—Stokes terms by the first c
perturbation from an equilibrium state, and Eq. (9b), we can see that the lag'flux
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accounts for the physical viscosity and heat conduction effects in case of viscous fi
Thus the fluxF" is not essential in inviscid flows. The role of the spatial slopes as
physical dissipation in case of simple advection equations can be seen more clea
Refs. [12, 13, 15]. From Eq. (26), it can be noted that in smooth region of the flow f
where the collision time is small compared to the computational timesstethe influence
of the fluxF' becomes dominant due to the increase 6f (1 — e 2!/7)/ At). On the other
hand, the role of the fluEE™ becomes significant near shock discontinuities because
increase of the collision time makesl — e~2/7) /At large. For inviscid flows where the
collision time is theoretically zerd; .12 j of Eq. (26) should beconf€. The fluxF' alone,
however, has difficulties in treating strong shock waves and expansion region as pointe
by Macrossan and Oliver [8] and Xu [9]. Thus the collision time has a non-zero small v:
even in smooth region and increases at shock discontinuities as in Eq. (25). The adjus
of the collision time according to flow characteristics couples the two flux tefnand
FEFM suitably. This coupling mechanism is ascribed to the particle collision effect thro
the BGK model, which provides advantages okeor FEFM alone in the computation of
inviscid flows.

In viscous calculations, numerical dissipation from the convective fluxesFl.and
FEFM should satisfy the constraint that it does not influence the physical dissipation
will be shown in Section 3, however, a direct application of Eq. (26) to viscous calculati
shows a noticeable deviation from experimental data and the results of other scheme
to the excessive numerical dissipation ™. As presented in the following section,
this problem can be overcome not by changing the coupling mechanism built in the E
numerical flux but by improving the flux compone#t™ suitable for viscous flows.

2.2. Gas-Kinetic Numerical Schemes for the Navier—Stokes Equations

In computing inviscid flows where computational mesh is not highly stretched an
boundary layer does not need to be resolved, the coupling mechanism between Fe f
andFE™M provides adequate numerical dissipation to capture the inviscid flow physics. S
difficulties, however, may arise in viscous calculations against our anticipation that the
FEFMwould be influential only near shock discontinuities. Wherever the computational t
step is small enough to be a similar order of the collision time, such as in the boundary |
with highly stretched cells, a close examination of Eq. (26) reveals that the portion of the
FEFM is still large even in smooth flow region, hindering the fiéix4, ; from capturing the
contact discontinuity exactly and hence computing viscous flows. The excessive nume
dissipation from the flu¥E™ directly influences the sensitive physical dissipation. Tt
flux F' alone should be good enough to resolve a boundary layer but it cannot treat con
flows involving the interaction between shock waves (or expansion fans) and boun
layers. In order to overcome such difficulties, we consider the following two approach

Scheme 1. Following the approach taken by Moschetta and Pullin’s EFMO scheme [
we try to improve the fluFE™ by considering the Osher’s linear subpath solution as

—F + F- , u>20

F*(Q2) — F"(Qu), u<o,
whereu denotes a common value of the normal velocity component at a cell interface
the subscripts 1 and 2 indicate intermediate states in Osher’s scheme. We shall refer
resulting scheme, i.e=5"MO together with the fluxeB' andF'"', as Scheme EEFMO flux
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enables us to resolve the contact discontinuity exactly without deteriorating its shock
turing capability. However, it needs extra computational time compared to theffihand

turns out to have some problems in resolving thermal boundary layer near a wall. This
be shown in the calculation of velocity and temperature profiles on a flat plate in Sectic
In addition, it turns out that this form of flux shows the transverse shock instability usu
observed in Godunov-type schemes [2]. Thus we suggest Scheme 2 to remedy the prol

Scheme 2. It is clearly seen from the mass flux BF™ that when convection velocity
is very small, as around a stagnation point or near a wall, the mass flux does not vanis
its numerical dissipation amountsta a- — p&)/2x+/7, which is larger than that of van
Leer’s flux vector splitting scheme. In order to cure the problem by making the flux var
near a wall, we modify theE™ to have the form

M/ ay2p01 M ag2pw(pr, or)
FEFM _ M"as 20 U1 + B pr/(204) N M ag2pw(oUr, prUr) + P pr /(20)
mod M,"a,201 Vi M, ay2pw(p Vi, or Vi)
Mt a0 Hi M a12Hi pw(or, or)
if (M* 4+ M™) > 0,
or
M a1 2 pw(or, o) M, ag/2po
IV||+al/2 pw(orUr, poUp) + P|+pl/(2)tl) i Mr_al/Z,Or Ur + Pr_pr/(Z)Lr)
M a2 pw(por Vi, o Vi) M a1 200 Ve
M,+a1/2 H; pw(or, o) M/ ay20r Hr
if (M*+ M) <0,
with
pop\°
pw(X,y) = (1 — w)X + wy, w=1-— min(p', pr) ) (31)
r |

Here, the common speed of soung, is given by the simple arithmetic average o
(a +ar)/2. Both M, and M, necessary for evaluating!® in Eq. (31), are redefined
as M, =u;/ai;> and M, = U, /a1/». The modification ofFE™™ by introducing a common
speed of sound,,, at the cell interface is equivalent to the reflection of particle collisiol
at macroscopic level. Note that by ignoring the two tepies exp(—a2M?2) /8 /7 and
orac exp(—a?M?) /8ai /7 of Eq. (28) in Eq. (31), the fluFEN together with the flux
F' conserves the total enthalpy. The pressure-based weighting furpation y) [26] in-
troduced to prevent the postshock overshootings usually shown in AUSM+ scheme [1
adopted here. In order to see the effect of the weighting function, the behavior of the
flux of FE-M is examined. WheaM" + M;") > 0, the mass flux becomes

FEM = MTay20 + M a12pw(pr, pr). (32)

In smooth region wherg, andp; are nearly the same, the weighting functmmbecomes
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o1- Thus the mass flux takes the following form:
Fimod = Mi"ay2o + My agz0 = (M" + M;)au 201 (33)

However, in the shock region whee « pr, for example, the weighting function gives &
value nearp, . Thus the mass flux becomes quite similar to that of the original EFM as
Fimea= MiTai20 + M, ay2pr . (34)
where both properties before and after the shock are taken into account. The present mc
flux FEFN seems to be similar, in smooth regions, to the AUSM+ scheme but one o
spurious behaviors, i.e., small oscillations adjacent to a wall, does not appear, owing t
fact that the fluxF' still acts near a wall. We shall refer &Y along withF' andF"" as

Scheme 2. In addition, we assume the coefficiene'bfin Eq. (29) to be—t under the
hydrodynamic limit, i.e.z <« At for both Scheme 1 and Scheme 2.

Prandtl Number Correction Method.Modification to the flux="" is needed in order to
make the present scheme work for arbitrary Pr number, since the Chapman—Enskog €
sion of the BGK relaxation model inherently givesPt [19]. A Prandtl number correction
can be made by observing that the part yielding viscous diffusion and heat conduction e
is theO(7) term in the BGK model [15]. From Eq. (19 (ua + vt?)go accounts for viscous
and heat conduction fluxes, which are equivalefan Eq. (26). Thus viscous stresses il
thex- andy-directions and the energy diffusion corresponBifo= [u(ua+ vb)go V> d E,
Fi = [uua+ vb)goW3 dE, andF)' = [u(ua+ vb)goW4 dE, respectively. Thus the cor-
rect heat conduction would be

1
-V.q= ﬁr(FL{' — UoFy — VoF3'). (35)

This leads to the following modified energy flux as

1 1

Famos= 5.Fa + | 1— 5. ) (UoF2' + VoFg'), (36)
Pr Pr

where the subscript denotes theith component of the corresponding vector. The ext

computational time for the present Pr number correction is nearly negligible becaus

moments required for Eq. (36) are already obtained during the calculation of the!'flux

2.3. Efficient Time Integration Methods for Steady Flows

As seen from Eq. (26), the present numerical flux is not only a function of flow variak
at both sides of the cell interface but that of the collision time and computational time <
which might handicap the convergence to a steady state. Direct application of local
stepping to Eq. (26) leads to physically wrong solutions because of the imbalance of fl
throughout a cell. In order to overcome this problem by deriving a time-independent 1
Xu et al.[13] ignored all the slope terms in the distribution functioigsandg as

g, x<0

o= (g o (37a)
g, >

g = go. (37b)
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Substituting Egs. (37a), (37b) into Eq. (6), the solutiorf adt the cell interface is
f=go+e " (fo—go), (38)

wheree V" was replaced by a small parametewhich was designed empirically to be-
come large near shock discontinuities. The numerical flux from these distribution funct
with Runge—Kautta time stepping and multigrid method was applied to inviscid airfoil ¢
culations. However, the viscous flux from the Navier—Stokes equations should be a
explicitly for viscous calculations, since this method disregards the spatial slope tern
the distribution functiorg. Also, the effect of the numerical dissipation in Eq. (38) on th
physical dissipation has to be resolved.

The present time integration, while keeping the spatial slope terms in Eq. (9b) to simt
viscous effects, is performed as (for the sake of brevity formulation in one-dimensional
is given)

At
QM =Q - B{Fiﬂ/z(Qiﬂ, Q. 7. At) — Fi_12(Qi, Qi—1. 7, AD},  (39)

whereF is the numerical flux in th&-direction. In order to implement local time stepping
Eq. (39) is changed into

A
AX
where At,, is a flux averaging time step antl; is a local time step satisfying the CFL
condition as

n+1

M =QP — — {Fit12(Qis1, Qi, 7, Aty) — Fi_1/2(Qi, Qi—1, T, Aty) }, (40)

AX
u +a’

This form of the time integration guarantees the flux balance throughout a cell. The
averaging time stept, used for all steady calculations in this paper is given by

Aty = CFL

(41)

At — min(At)
"7 2CFL ’

where mir(At)) takes the minimum value among the local time stdps. The reason for
this specific averaging is that this will make solution accuracy equal to that of the E
forward time integration by the minimum time step with CEIO.5. In viscous calculations,
a time step restriction due to diffusion effects is also taken into account in Eq. (41) &
Ref. [20].

For the time integration of steady state problems, Euler backward implicit integratio
thought to be preferable to multi-stage Runge—Kutta method, since the method eval
residuals only once per iteration and allows a larger time step. Applying Newton t
linearization to the present flux,

(42)

aF
IQ

where the flux averaging time step in the numerical flux is assumed to be constar
standardA-form with the above linearization is expressed by

(I/At| +8<8FX)>AQ= -R, (44)

F'+l = F(Q™Y) = F" 4+ AF + O(At?) = F" + ( )(Q”+l — Q" + O(At?), (43)

ax\ 9Q



AN IMPROVED GAS-KINETIC BGK SCHEME 13

wherel is an identity matrix andR denotes a residual vector, or the summation of all flux
throughout a cell. In evaluating the flux Jacobidfy dQ in Eq. (44), only the contribution

of FE™ out of the total numerical flug 1 ; is considered to reduce the computing time
After this approximate linearization, flux Jacobians are discretized in an upwind mann

(I/An + i(SX‘A+ + 8;{A‘)> AQ=-R (45)
AX
with

A+

aF" 9 /°° _ 9Ff a (O
- = u lIIdE’ A = r = / u \I’dE,
0 0Q Jo O 0Q 9, )oY

where 8§ denote the forward and backward difference in thdirection. In the two-
dimensional case, the left hand side is efficiently inverted by the ADI (Alternating |
rection Implicit) method. In an effort to reduce the computational cost of the evaluatiol
the present flux Jacobian, the Jacobian from van Leer’s flux [17] was tested regardle
the flux on the right hand side of Eq. (45). However, it only gave about one-third of
stable time step of the present flux Jacobian in a few airfoil test cases.

In order to accelerate the convergence to a steady state, a multigrid procedure i
plemented into the present implicit time integration. We follow the multigrid procedt
in Ref. [21]. Denoting a mesh level by subscript, the flow variables of the fine mesh
restricted to the coarse mesh by area weighting as

D =" $Qn/Sn. (46)

where$, is the cell area of the fine mesh a8g, is the sum of the area over four cells ir
the fine mesh. Then the solutions on the coarse mesh are updated as follows.

(1) Calculate corrections, and update solutions on the fine mesh.

(2) Restrict the flow variables to the coarse mesh.

(3) Collect the residual over the four cells of the fine mesh, and calculate a for¢
function to get the residual on the coarse mesh as

oh = Ron(Qzn) + Z Rn(Qn) — Ran (Q40)- (47

(4) Calculate corrections and update solutions on the coarse mesh. The residual f
next coarser mesh is calculated similarly as

Rl = Ran(Qan) + > Ry, — Ran (QL). (48)

The procedure is repeated down to the coarsest mesh and finally sends correction:
to the fine mesh by bilinear interpolation. One of the important requirements for an
cient multigrid procedure is that the time integration method should effectively damp
high frequency errors. Since we do not optimize the time integration of Eq. (45) to st
this purpose, more research may be needed here for a better convergence characte
Nevertheless, there is quite an improvement over a single grid calculation in steady
problems, as will be shown in numerous tests in the following section. In this paper,
V-cycle is adopted for all calculations.
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3. NUMERICAL RESULTS

In this section, we demonstrate the capability of the present schemes with carefull;
lected test cases ranging from one-dimensional shock tube problems to viscous turk
flows around airfoils with a two-equation turbulence model. In one-dimensional calci
tions, the spatial slope term for thedirection in Eq. (9b) is, of course, not considerec
The computational time is advanced with the Euler forward method for unsteady proble
Since there is no noticeable difference between Scheme 1 and Scheme 2 in terms of
tion accuracy and convergence characteristics except for the thermal boundary laye
transverse shock instability test problems, we apply Scheme 2 in most of the test case
inviscid calculations, Scheme 2 is used in order to show that the present modification w
consistently for inviscid flow fields as well as for viscous flows.

Case 1. Various one-dimensional shock tube problems are solved here to confirm
accuracy and robustness of Scheme 2, and results are compared with those of Roe’
scheme. The result of the classical Sod test with 100 cells is shown in Fig. 1. A shock v
and a contact discontinuity are captured with the comparable accuracy of Roe’s schem
both corners of the rarefraction wave are resolved more sharply with the current meth

The next test case is quite similar to the previous one, but with special initial conditi
given aspy =3,u =0.9, pp=3 andp; =1,u, =0.9, p, =1, a sonic point exists along a
rarefraction wave. Thus, Roe’s scheme without an entropy fix shows an entropy-viole
solution. The present method, however, prevents the formation of an expansion shock
Fig. 2 confirming that the present scheme satisfies the entropy condition.

The results of complicated interactions from two blast waves with 400 cells are show
Fig. 3. Itis also evident in this test case that noticeable difference is not observed bet
the present and Roe’s scheme with regard to solution accuracy.

With the introduction of the pressure-based weighting function in Eq. (31), a postst
overshooting is much suppressed, as shown in a head-on shock collision test case w

Roe
. Scheme 2
Exact

Density
o o
6] (o))
T

03

02

0.25 0.5 0.75

FIG.1. Sod testcase.
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2.75
(e] Roe
2.5 . Scheme 2
Exact

2.25
2

2 2
)
[a)

1.75

15

1.25

=
=

0.25 0.5 0.75

FIG. 2. Sod test case with a sonic point in expansion waves.

initial conditions ofM; = —M, =25 in Fig. 4. The temperature glitch at the symmetry lin
is observed like other classical upwind schemes, but weaker than that of Roe’ schem
A supersonic expansion test [22] with the initial conditiongof 1,u; = —2,¢ =3 and
or=1,u =2, =3 is solved to see whether or not Scheme 2 preserves the positivit
density and energy. Many Godunov-type schemes including Roe’s scheme may fail ir
test problem, of which cure generally lies in the modification of wave speeds at the exp

X (e} Roe
- . Scheme 2
6 Roe(2000 cells)
sk
s
2 [
< | <
& 3F
[ lo

0.4 0.5 0.8

FIG. 3. Woodward—Collela blasting wave test case.
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Exact
900 = Exact 200 = o Roe
o o Roe F ® . Scheme 2
800 Scheme 2 180 ;_ Py
700 N 160F
I 140 4
600 | F
[ o E
o n E120 -
3500 - g F
g [ GDJ_].OO =
a0 =
[ [R:10]
F @ 8of
300 q o
[ 60 =
200 wkE
100 20F
oks I SR o
0.25 0.5 0.75 0 0.25 0.5 0.75 1

FIG. 4. Colliding flows withM, = —M, =25.

of accuracy. But Scheme 2 faces no difficulty in near vacuum flows as shown in Fig. 5,
Scheme 1 also survives this test case.

Case 2.Inviscid steady state transonic flow calculations for the RAE2822 and NACAO(
airfoils are presented with Scheme 2. The implicit time integration method with the Ic
time stepping and four-level multigrid developed in Section 2.3 is applied on an O-t
mesh with 160 circumferential and 32 radial cells. A typical O-type mesh is showr
Fig. 6. The Cp distribution of the RAE2822 airfoil 8 =0.75, « = 3°, and theL, norm
error of density are shown in Fig. 7. Advantages of the present scheme over the EFM sc
based on the collisionless Boltzmann equation can be seen. The present scheme cz:
a shock within one interior cell, while the EFM within two or three cells. The multigr
method relieves computational burden significantly, considering the overhead of four-|
multigrid is about 50% of the single grid computation. The error history of the Euler f
ward time integration in Eq. (39) without any convergence acceleration method is sh
for comparison. Figure 8 shows the Cp distribution and error history of the NACA0012
foilat M =0.8, « = 1.25°. A shock is captured in two interior cells and the computation
time is effectively reduced by the multigrid method. Next, we demonstrate the accul
sensitivity with respect to the variation of the coeffici@tin Eq. (25). Figure 9 shows

0.7

Exact
Scheme 2

o6

e
w

Temperature
o
=

o
w

Exact
Scheme 2

0.2

TR I S T S N R S N
0.25 0.5 0.75

T I N R R R
0.25 0.5 0.75

0.17\ L L

FIG.5. Supersonic expansion test case with=1,u = —2,¢ =3 andp, =1,u, =2, ¢ = 3.
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FIG. 6. Typical O-type mesh around an airfoil.

NS

Cp distributions withC, = 0.0001, 0.01, and 1.0, from which we can confirm that althou
C, varies by four orders of magnitude, the shock is captured within one or two cells.
expected from the form of the collision time in Eq. (25), Cp distributions nearly match e
other in the smooth region. All these results reveal that the present method captures
waves within one or two interior cells, and provides a good accuracy and efficiency
transonic flows.

Case 3. This test case is taken from the paper by Quirk [2]. A strong shock we
propagates on the long two-dimensional duct mesh with perturbed center lines. Figu
shows the Mach number contours of Roe’s FDS, Scheme 1, and Scheme with01.
After 5000 iterations, Roe’s FDS shows the so-called carbuncle in which the shock strus

Single grid
° S — — — — 4level multigrid
L~ — - — - Euler forward in Eq.(39)

Error

) IS I I R R
200 400 600 800
Iteration

FIG. 7. Cp distribution and error history of RAE2822 airfoil &l =0.75, « =3° with C, =1.0973,
Cp =0.0463.
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FIG. 8. Cp distribution and error history of NACA0012 airfoil & =0.8, « =1.25° with C,_ =0.3538,

Cp =0.0229 (Scheme 2).

is completely destroyed. Scheme 2 cleanly captures the shock. According to the linea
analysis by Gressieet al. [27], the EIM scheme (or equivalently the TTT scheme) i
marginally stable with regard to the disturbance. In the current test case, perturbatior
not seem to grow with time due to the influence of the fi§&Y near the shock. Symptom of
transverse shock instability may be induced with a smaller val@g dfie to the dominance
ofthe fluxF', but not as severely as Roe’s scheme. On the other hand, Scheme 1 also ex
the carbuncle phenomenon as Roe’s scheme owing to its resemblance with Godunoy

schemes.

Case 4. Itis well known that Godunov-type schemes show a kinked Mach stem in
double Mach reflection problem. Gressadral. [27] have shown that even the AUSM+
scheme on a refined mesh can suffer from the kinked Mach stem, too. The test is set
30° ramp and a moving shock 8s=>5.5. In Fig. 11, the density contours of Scheme
with C, =0.01, the AUSM+ scheme, and the AUSM+ scheme with the pressure-ba
weighting function as in Eq. (31) are shown on a 40000 mesh. The results are obtaine
with the first order spatial accuracy. The kink is about to develop in the AUSM+ scheme a

. C2=0.0001
o C2=0.01
A C2=1.0

0.5
Chord

C2=0.0001
[e] C2=0.01
A C2=1.0

0 0.25 0.5
Chord

FIG. 9. Sensitivity of Cp distribution according to the variation®@f (Scheme 2).
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Scheme 1

Scheme 2 E

FIG. 10. Mach number contours of even—odd perturbed grid problem with 100 contour levels.

principal Mach stem while the present scheme and AUSM+ scheme with the pressure-|
weighting function do not show such behavior. Inferring from these results, the press
based weighting function in Eq. (31) seems to prevent or, at least, delay the formatic
the kinked Mach stem.

Case 5. A boundary layer on a flat plate & =0.2 and Re=10* is calculated. A
rectangular mesh system with 8133 cells is generated to maintain nearly the same numi
of points in the boundary layer along the plate. In Fig. 12, non-dimensionatized y
velocity profiles are shown a/L = 0.3, 0.6, 0.8, and compared with the Blasius profiles. /
good agreement and convergence acceleration are achieved with Scheme 1 and Sct
However, the numerical flux of Eq. (26) without modifications to the ™ cannot
accurately predict the boundary layer for the reasons discussed in Section 2.2. Alst
boundary layer calculation carried out with the flux frgranly as in Ref. [13] is believed to
be difficult to compute viscous flows with shock waves. On the other hand, both Schel
and Scheme 2 are able to capture shock waves as well as contact discontinuities imp
for viscous calculations. With the same free stream conditions and mesh distributic
thermal boundary layer with adiabatic wall boundary condition at various Pr numbel
calculated. The Pr number correction is implemented into Scheme 1 and Scheme
shown in Fig. 13, the temperature distribution with Scheme 1 is overpredicted near a
contrary to the authors’ argument [10] that the physical viscosity would damp out
temperature glitch near the wall in viscous flows. The reason is not yet clearly explai
but refined mesh close to the wall mitigates the discrepancy. Scheme 2, however, s
good agreements with exact solutions at various Pr numbers.

Case 6. This test case is two-dimensional laminar flows characterized by an obli
shock with an incident angle of 3 upon a flat plate causing a boundary layer to separ:
and reattach around the shock impinging region. The complicated phenomenon provi
good test of validating a scheme before a turbulence model is implemented. Computal

FIG. 11. Density contours of double Mach reflection on 40800 mesh (left: Scheme 2, center: AUSM+,
right: AUSM+ with pressure-based weighting function in Eg. (31)).
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0.0025 |
00z — — BGK from Eq.(7a).(7b) aF
0.002 — - — . Schemel ! Single Grid
[ Scheme 2 — - — - Scheme 1 with 4 level multigrid
B — — — — Roe — — — — Scheme 2 with 4 level multigrid
0.0015 = —_— Roe on fine mesh
s Exp[23]
- N S
O 0.001 2
L \ w
[ ~
L —~
0.0005 =
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00005f~ oy o N sl AN IR BT B b
0.5 1 15 1000 2000 3000 4000
X Iteration

FIG. 14. Skin friction coefficient and error history of shock—boundary layer interaction problém-=a®.0,
Re=2.96 x 10°.

results are obtained M = 2.0, Re=2.96 x 10° on 105x 65 mesh and compared with the
experimental results of Degrez [23]. In Fig. 14, skin friction coefficients from Schem
and Scheme 2 are compared with the results of Roe’s scheme on the same mes
on the finer mesh of 25¥ 129 cells, indicating that the overall accuracy of the prese
schemes is quite acceptable. It also shows that the current schemes are adequate for:
flows, while the original BGK scheme yields a large deviation from other results. A care
examination of pressure contours in Fig. 15 reveals that Scheme 2 captures the shock

Level p
15 0.980
14 0961
13 0943
12 0.924
11 0906
10 0887
9 0869
0.850
0.831
0.813
0.794
0.776
0.757
0.739
0.720

7/

FIG. 15. Pressure contours of shock—boundary layer interaction.
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FIG.16. Cpdistributionanderror history M =0.73,a = 2.79 and Re= 6.5 x 10° with the Baldwin—Lomax
turbulence modelC, =0.8714,C, =0.0195.

sharply than Roe’s scheme, and does not exhibit spurious oscillations near a wall that
observed in AUSM+ scheme. An efficient reduction of the computational cost is achie
through multigrid technique, as shown in Fig. 14. As mentioned earlier, there seems
no noticeable difference between Scheme 1 and Scheme 2 in terms of solution acc
and convergence characteristics.

Case 7. Thelasttestcaseis concerned with viscous turbulent flows around the RAE:
airfoil at transonic regime. In order to incorporate turbulence effectinto the current sche

Scheme 2
——————— Roe

L I L L L L |
0.75 1

0.5
Chord

FIG. 17. Cp distribution of RAE2822 airfoil aM = 0.75,a = 2.79° and Re=6.2 x 1¢° with thek — w SST
model,C, =0.7641,Cp, =0.0253.
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TABLE |
Computational Cost of Proposed Schemes

Roe’s FDSt+ Original BGK scheme from
viscous flux Egs. (7a), (7hyithout A Scheme 1 Scheme 2

1 1.29 1.84 1.33

the collision time in Eqg. (24) is changed accordingly as

Moo (72 + f1t) VAo 4
— +Co— - P, 49
Re.p 2 7o [P — P (49)

T =

where/i; is the eddy viscosity obtained from an appropriate turbulence model depen
on the physical situation of flow fields. Figure 16 shows Cp distribution and error hist
on 241x 48 C-type mesh a1 =0.73,a =2.79°, and Re= 6.5 x 10° corresponding to the
experimental Case 9 in Ref. [24]. The Baldwin—Lomax turbulence model is used. Dif
ences between Scheme 2 and Roe’s scheme are hardly noticeable. For the Case 10
the Baldwin—Lomax turbulence model usually fails to predict the correct shock posit
the two equatiolk — w SST turbulence model by Menter [25] is adopted. Figure 17 show
fairly accurate Cp distribution compared with the experimental results. Free stream cc
tions for the computation atd = 0.75,« = 2.79 and Re= 6.2 x 1(P. In both calculations,
the flow is assumed to be fully turbulent without any transition near the leading edge
can be seen from the computed results, the present scheme works well with any turbu
model.

Finally, the computational efficiency of the proposed schemes is presented. Due to 1
moments calculations including error functions, the flux compoRé&ntakes a relatively
large computing time. In order for a fair comparison, however, the current schemes
compared with other ones for viscous calculations. Table | shows the relative computat
cost of several schemes for the Navier—Stokes computations with the second order s
accuracy and one-step explicit time integration. Note that, unlike the original BGK sch
by Xu [11], the temporal sIopEis notincluded inthe presentcomparison, which reducest
computational time substantially.ﬁ_fis included, the required computing time is noticeabl
larger than that of Scheme 2. The computational costs of Scheme 1 and Scheme 2 are
expensive than Roe’s FDS scheme with viscous flux. Considering the various desi
properties especially for Scheme 2, however, the computational burden is compen:
We believe that there is still a room for a speed-up of the present schemes if a fi
algorithm for the evaluation of error functions is used. In the present paper, the routir
SPECFUN package availablewiw.netlib.org is used, which applies the Chebyshe
approximation.

4. CONCLUDING REMARKS

From the Boltzmann equation with the BGK approximation, an improved gas-kine
BGK scheme suitable for compressible inviscid and viscous flows is developed. The ori
BGK numerical flux for viscous flows is turned out to be a non-linear coupling amc
Pullin’s EFM [3], EIM by Macrossan and Oliver [8] (or equivalently TTT by Xu [9]) anc
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viscous flux, where the coupling mechanism is governed by the BGK model. In orde
guarantee the accurate resolution of viscous and thermal boundary layer involving s
waves, one component of the BGK numerical flux, i.e., the EFM flux, is modified, anc
efficient method for the Prandtl number correction is developed. For efficient steady
calculations, convergence acceleration methods such as local time stepping and mu
techniques consistent with the present implicit formulation are developed.

Although there is still a room to improve the computational efficiency and optimal f
mulation of the collision time of the proposed schemes, numerous computational
performed in this paper show that the present schemes are able to solve a wide rai
aerodynamic problems accurately without sacrificing the robustness of the original E
scheme. Especially, Scheme 2, keeping a high level of accuracy comparable to God
type schemes, is considered to possess many desirable properties that cannot be fc
other well known schemes.

APPENDIX

The form of the fluxF" in Eq. (29) with the Prandtl number correction of Eq. (36
is explicitly presented. Before writing out the flux, the formula for the evaluation of t
Maxwellian distribution with the limits of—oo, c0) is given. After the definition for the
moments of the Maxwelliagy with respect taj is introduced as

<q>=/q@d3, (50)
1

the moments of appearing in the evaluation of distribution functions are given by

K K(K+2
€ =5 €= (Tg) (51)
and
(u%) =1, (uh) = Uo,
n+1 (52)

<Un+2> — U0<un+1) 4

(un.

20

The same formula can be applied to the moment of the Maxwellian distribution func
with respect ta by replacingUy with \; in Eq. (52), and

(ulo™e) = (uy (M) (E"). (53)

Then, the fluxF" can be expressed as

Fil = /u(ua_—i— vb)godE = po(ar(U?) + ax(u®) + ag(u?v) + as(u + u?v? 4 uZe?)
+ by (uv) + by (U?v) + bg(uv?) + ba(uPv + uv® + uve?)), (53a)
Fil = /u(u5+ vb)ug dE = po(ar(u®) + ap(u®) + ag(uv) + as(u® + udv? + u3t?)

+ by (Uv) + bp(Uv) + ba(U?v?) + by(utv + u?v® + uvE?)), (53b)
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Fy = /u(uaT+ vb)ugo dE = po(@r(U?v) + ax(uPv) + ag(u®v?)

+ ag(u*v + U202 + UPvE?) + by (Uv?) + by (UPv?) + bs(uv®)
+ ba(uv® + vt + uv??)), (53c)

_ — 1 1
Fil = /u(ua + vb)é(u2 + 02+ £2)godE = E,oo(al(u4 + u?v? 4 u?e?)
+ap(u® + uPv? 4 uPE?) + ag(u®v + u?v® + UPvEZ) + ay (Ul + U (v* + €%
+2u*v? 4 282U + U%0?)) + by (UPv + uv® + UvE?) + bo(utv + U?V® + UPE?)
+ bs(Uv? 4 uv® 4 uPv?€2) + by(Usv + uv(v* + &%) + 2u%°
+ 202Ut + U?v?))). (53d)

In actual coding, Egs. (53a)—(53d) can be efficiently implemented since the moments
as (u%8), (1972, and (¢?) are already obtained during the calculation of the fiixn
Eq. (27), and there are many common factors. Applying the Prandtl number correctior
correctedF)' can be expressed as

Fioa = Fi /Pr+ ((WFY + (v)F§) (L — 1/Pn. (54)
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